

The effectiveness of a European speed limit versus an international bunker-levy to reduce CO₂ emissions from container shipping

Pierre Cariou a,1, Ali Cheaitou a,b,*,1

Presented by Pierre Cariou Professeur Associé Euromed Management

Tuesday 9 April 2013

^a Euromed Management, Rue Antoine Bourdelle, Domaine de Luminy, BP 921, 13288 Marseille Cedex 9, France

^b Industrial Engineering and Management Department, College of Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates

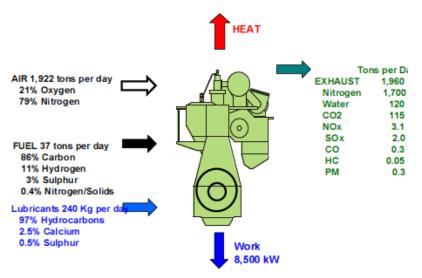
STARTING POINT

Shipping and EU Policy Adviser John Maggs "A mandatory speed limit found for different ship types...can create a benefit to society without costing owners" (Lloyd's List, 2011).

A reaction to IMO proposal for a bunker levy (tax) to limit CO2 emissions.

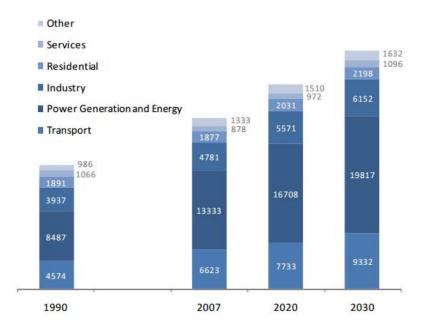
OBJECTIVE: To challenge this view taking the case of liner shipping services for which a need of weekly services is required.

Why liner shipping = first emitter of CO2



- 1. Research question
- 2. Model
- 3. Application
- 4. Conclusions

1. RESEARCH QUESTION


Due to fuel combustion, shipping generates emissions.

Daily flows for a 10,000 kW two stroke engine running at 85% Maximum Continuous Rating

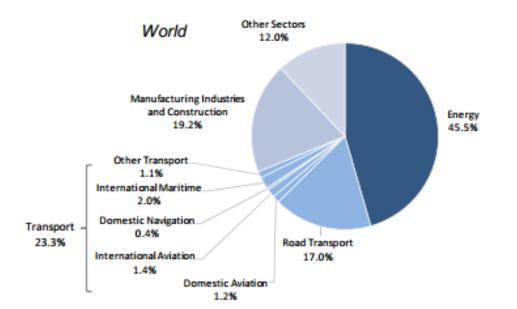
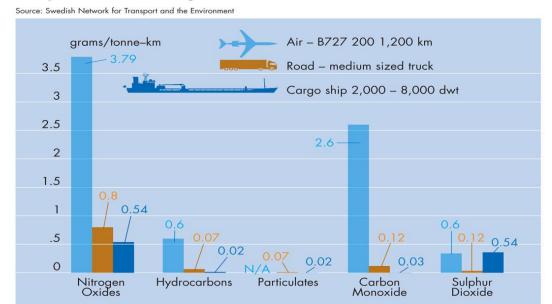

	Local	Regional	Global	Main impacts
Particulates Matters (PM)				Cardiopulmonary
Sulfur dioxide (Sox)				Cardiopulmonary Acid Rain
Oxides of nitrogen (Nox)				Cardiopulmonary Acid Rain
Carbon dioxide (CO2)				Global warming

Figure 1-2: Projected world energy-related CO2 emissions (Mt)



Source: (IEA, 2009)

1.5B: 2005 Global CO2 Emissions from Fuel Combustion

Comparison of exhaust gas emissions

International shipping CO2 emission scenarios

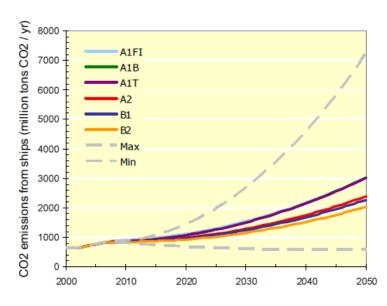
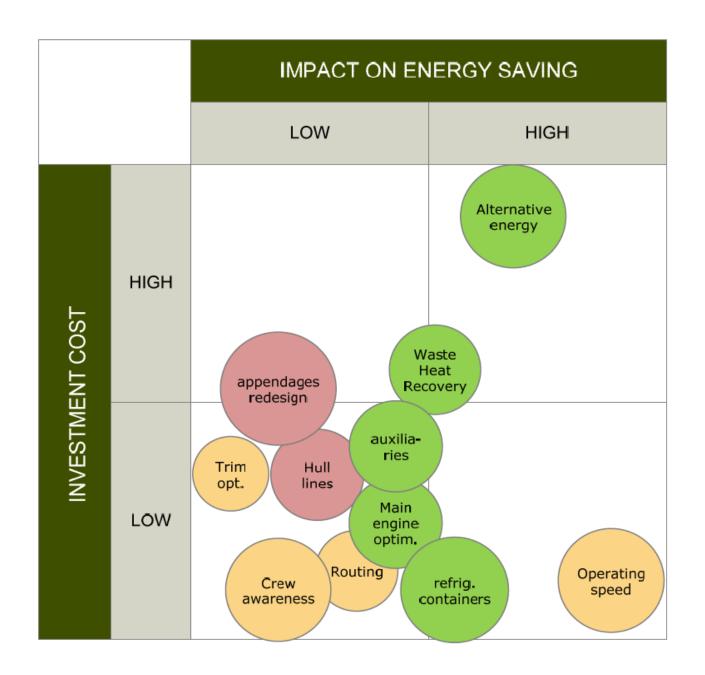



Figure 7-1: CO₂ emissions scenarios for international shipping (Second IMO GHG Study 2009)

To play on operating speed is one the most efficient ways to reduce CO2 emissions. It can be regulated:

- 1. Directly in setting a speed limit by EU
- 2. Indirectly in setting a tax on bunker (fuel price) by IMO

Objective: Show through a model/application that these two mechanisms are not equivalent and what could be their implications on shipping lines behaviour wrt fleet mix.

1. MODEL

The two policies (speed limit versus tax) affect liner shipping profit functions in different ways.

$$\Pi = \rho_d - CB_d^M - CB_d^A - CV_d - CD_d$$

Π the average daily profit of all vessels operating on the cycle

 $p_{\rm d}$ the average daily revenue

CBM_d the average daily bunker cost for the main engine

CB^A_d the average daily bunker cost for the auxiliary engine

CV_d the average daily fixed cost

CD_d the average daily depreciation cost of the containers

$$\Pi = \rho_{d} - CB_{d}^{M} - CB_{d}^{A} - CV_{d} - CD_{d}$$

$$= \frac{1}{7} \sum_{j \in A} (\rho^{jAB} q^{jAB} + \rho^{jBA} q^{jBA}) - C_{b}^{M} \left(\frac{SF^{M} + S^{R} F^{MR}}{168} \right) - C_{b}^{A} NF_{F}^{A} - C_{b}^{A} N \frac{(q^{ZAB} + q^{ZBA})F^{Z} + (q^{FAB} + q^{FBA})F^{FZ}}{2} - C_{v}N$$

$$- N \left[\frac{dp^{d} (q^{dAB} + q^{dBA})}{2} + dp^{R} \max(q^{RAB}; q^{RBA}) \right] \tag{20}$$

A speed limit plays on S as S^R+

10

$$F^{M} = (SFOC^{M}EL^{M}PS^{M}) \left(\frac{V_{i}}{V^{DS}}\right)^{a} \frac{24}{10^{6}}$$

Typical fuel consumption curve for 11400Teu vessel, CMA CGM

Source: Copil (2011, Mai)

Total CO2 emissions - Main engine

$$ECO2_d^M = ECO2_d^{M-AB} = ECO2_d^{M-BA} = 3.17 \frac{SF^M + S^R F^{MR}}{168}$$

Total CO2 emissions – Auxiliary engine

$$ECO2_d^A = 3.17 \left(F_F^A + \frac{(q^{ZAB} + q^{ZBA})F^Z + (q^{FAB} + q^{FBA})F^F}{2} \right) N$$

3. APPLICATION

Table 1 Services characteristics in September 2010.

	Hamburg Süd Safran Europe/South America	MSC/CMA CGM Victory Europe/North America
Number of vessels ^a	7	7
Vessel capacity (TEU) ^a	5905	6470
Main engine power (kW) ^b	41,186	56,273
Auxiliary engine power (kW) ^c	2433	2433
Design speed (knots) ^b	23.3	24.7
Reefer capacity (TEU) ^b	1 365	412
Vessel age (year) ^b	2.5	7.4
Cycle distance (nautical miles) ^d	11, 810	7600
Speed at sea (knots) ^e	15.08	15.07
Intercontinental time at sea per cycle (days) ^a	30	21
Cycle time (days) ^a	49	49
Weekly demand (dry) (TEU) ^a	3774	3572
Weekly demand (dry) (TEU) ^a	3, 585	3516
Weekly demand (frozen/fresh) (TEU) a,e	797/398	412

^a From Hamburg Süd and CMA-CGM website schedule and Drewry Research (2010).

^b From Lloyd's Register Fairplay Database (2010).

^c From Buhaug et al. (2009).

^d From Sea Distance (2011) for successively a Rotterdam/Santos and Charleston/Bremerhaven return trip.

e Estimated from data.

Table 2 Total profit in \$ and amount of CO_2 emitted as a function of the number of vessels.

N	Northern Europe/South America			Northern Europe/North America		
	V _i in knots	CO ₂ in tons	Profit in \$	V_i in knots	CO ₂ in tons	Profit in \$
6	19.67	1699	678,561	22.62	1635	1,392,418
7	15.08	1360	697,112	15.07	1072	1,451,041
8	12.23	1236	681,692	11.30	901	1,447,942
9	10.28	1202	652,063	9.04	842	1,426,990
10	8.87	1213	615,457	7.53	828	1,399,012

Table 3
Total profit in \$ with a bunker-levy policy. Assumption: Tax=3.17x 15 Euro/ton CO2 and 3.17x 30 Euro/ton (Metcalf, 2007)

N	Northern Europe/South Americ	ca	Northern Europe/North America		
	Bunker-levy at 47.5 \$/ton	Bunker-levy at 95.1 \$/ton	Bunker-levy at 47.5 \$/ton	Bunker-levy at 95.1 \$/ton	
6	653,073	627.586	1,367,895	1,343,372	
7	676,714	656,315	1,434,960	1,418,880	
8	663,152	644,612	1,434,434	1,420,926	
9	634,030	615,997	1,414,357	1,401,724	
10	597,267	579,078	1,386,586	1,374,159	

A tax does not change the optimal configuration (7 vessels deployed and same amount of CO2 emissions) on Northern Europe/South America trade but reduces profit (polluter pays for the externality).

The only case when it changes is on Transatlantic at high level of tax.

Table 2 Total profit in \$ and amount of CO_2 emitted as a function of the number of vessels.

N	Northern Europe/South America			Northern Europe/North America		
	V _i in knots	CO ₂ in tons	Profit in \$	V _i in knots	CO ₂ in tons	Profit in \$
6	19.67	1699	678,561	22.62	1635	1,392,418
7	15.08	1360	697,112	15.07	1072	1,451,041
8	12.23	1236	681,692	11.30	901	1,447,942
9	10.28	1202	652,063	9.04	842	1,426,990
10	8.87	1213	615,457	7.53	828	1,399,012

Table 4
Total profit in \$ and amount of CO₂ emitted with a speed limit policy. Assumption: set at 200 nm @ 15 kt

N	Northern Europe/South America			Northern Europe/North America		
	V _i in knots	CO ₂ in tons	Profit in \$	V_i in knots	CO ₂ in tons	Profit in \$
6	20.66	1815	660,262	24.55	1840	1,360,067
7	15.66	1417	688,059	15.91	1139	1,440,452
8	12.60	1271	676,111	11.77	936	1,442,417
9	10.55	1228	648,069	9.34	866	1,423,228
10	9.07	1233	612,289	7.74	847	1,396,018

- 1. On Northern Europe/South America trade, a speed limit does not change the optimal configuration, increases the amount of CO2 emitted (from 1360 to 1417) and reduces the ship-owner profit (from 697 112 USD to 688 059 USD)
- 2. On Northern Europe/North America trade, a speed limit changes the optimal configuration (from 7 to 8 vessels), reduces the owner profit (from 1 451 041 USD to 1 442 417 USD) and the amount of CO2 emitted (from 1072 to 936). The price of one ton of CO2 saved is then = 63.4 USD/ton CO2 > What society is willing to pay!!!!!

4. CONCLUSIONS

1. A tax can be efficient only at high level of taxation and on market with specific characteristics.

2. A speed limit might be counter-productive at a global scale (more emissions than initally).

- 3. A speed limit in European waters will increase transportation costs for Short sea shipping and reduces transfer of trade from road to sea (high share of incompressible time).
- 4. Confirm that if for SOX, NOX... a regional policy might make sense but not for CO2 for which the global impact should be looked at = Call for an international agreement (IMO rather than EU) if we want to imply a change in ship-owners behaviour.

Pierre Cariou Associate Professor Euromed Management BP 921

13288 - Marseille Cedex 9

France

Tel: +33(0) 491 827 859

E-mail: pierre.cariou@euromed-managment.com