The impact of changing ships' fuels

BPA Conference

October 2012

Gail Bradford

MDS Transmodal

1. Marpol Annex VI: Prevention of Air Pollution from Ships

2. Why is Annex VI necessary in these areas?

3. The SECA measures

Two sets of sulphur emission and fuel quality standards:

- 1. Global requirements
- 2. More stringent requirements in defined Emission Control Areas
- ECAs are currently limited to 1.0% m/m, will decrease to 0.1% in January 2015
- Global level now at 3.5%, will decrease to 0.5% in 2020 or 2025

4. The North Sea/English Channel/Baltic SECAs

- Limit on sulphur content of marine fuels of 0.1% from January 2015
- Effectively bans heavy fuel oil unless emission abatement methods employed
- Owners must provide evidence of fuel purchase etc., monitored by Port State Control
- West Coast GB and Irish Sea not included...yet
- Rest of European Waters under discussion in the EC

COMPANY AND

5. Strong environmental & health argument

• Net reduction in SO_2 No_x and particulate matter (PM) by 2020 forecast at:

		'000s tonnes	
	So ₂	No_x	PM2.5
Baltic	157	55	25
North Sea	374	130	55

Source: SEC (2011) 918 final (Commission)

Net monetised benefit of 0.1% sulphur rule (Baltic, North Sea and Channel) in 2020
 €billion

	high scenario	low scenario
Environmental/heath benefits	23	10
Operator costs	4.6	0.9
Cost benefit ratio	5.0	25.6

Difficult to argue with such high ratios

6. Previous studies

- European Community Shipowners Association, Jan 2010
- Transport Mobility Leuven, August 2010
- Swedish Maritime Administration Study, 2009

7. Study conclusions

- <u>ECSA</u> looked at 15 routes including 8 in UK
- Concluded that switching to MGO (0.1% sulphur) from HFO (1.5% sulphur) would raise ferry operating costs by 20%-30% and by 12% on long distance roro routes (Benelux-Humber/Scotland) around £25 per unaccompanied trailer)
- A warning that ECA could impact on policy to promote short sea shipping:

"Depending on the actual modal back shift the overall outcome for the environmental performance might well be negative".

<u>TML</u> concluded impact would vary considerably by sub-mode

Change in share

– Lolo -7%

Roro freight only -4%

Small ro-pax -1%

Large ro-pax-2%

(based on conversion to MGO instead of fitting scrubbers)

8. MDST appraisal

ECSA study

- Did not consider Dover Straits, main focus Swedish routes
- Based on lower fuel prices prevailing then (290hfo/521mgo)
- Limited to ro-ro ferry routes and did not consider intra- European short sea and feeder container services or bulk markets

TML Study

- Maritime costs based on daily ship operating costs including capital costs, much higher than market rates (35-45%), which determine shipping line behaviour
- Rail costs used were much lower than market rates
- Lo-lo big losers as costs assumed to rise by 29%
- Contradicted ECSA study on small loss of market share by small ropax
- A reduction in road haulage (as model assumed fixed total transport budget, so maritime consumed more of the budget)- unrealistic

9. Swedish maritime administration study

- also assumed MGO @ + €200 versus HFO (present exch. rates)
- concluded effects would include
 - concentration of overland rail haulage through principal port
 (Gothenburg) replacing local port traffic
 - transfer from SSS to through rail southbound to Continental mainland (via Oresund Bridge)
 - an increase in road haulage traffic in southern Sweden
 - Switching of cargo from SSS along the European coast and even the Mediterranean to rail

"the consequences for society of a [consequential] transfer of freight transport from shipping to road are not desirable from an environmental perspective"

10. UK Case Study

11. UK – Continent Unit load market (2010)

('000s units)

	Western Channel	Dover Straits	North Sea	Total	% share
Accompanied trucks	282	3,243	212	3,737	42%
Unaccompanied trailers	95	74	1,189	1,358	15%
MAFI trailers	-	-	713	713	8%
Containers	-	-	2,990	2,990	34%
Total	377	3,317	5,104	8,798	
% share	4%	38%	58%		100%

- Dover dominates accompanied market
- North sea ports dominate Unacc. and container (lo-lo) market
- North Sea has largest overall market share

12. GBFM: to test impact of SECA on unitised cargo

- GBFM calibrated transport cost model of maritime, road and rail costs
- Explains route assignment, modal choice and route selection
- Case study analysis limited to intra European cargo to test:
- 1. Switch to scrubbers each ship to cost €4 million to 'convert' + 2% extra energy costs + €100,000 increase in fixed operating costs.
- 2. Alternative to use MGO instead of fuel oil
 - long run option to build new ships for LNG
- Otherwise all conditions remaining constant

13. GB – Continent services

• Assumed (modelled) market shares in 2015

Route	Share
Channel tunnel through rail	2.0%
Dover	25.3%
Eurotunnel	14.0%
Ramsgate	1.5%
Western Channel	3.6%
Southern N Sea – Benelux	13.9%
Northern N Sea – Benelux	11.1%
Scandinavia services	7.3%
Longer ro-ro services	1.5%
Iberian peninsula	0.9%
Ireland	17.3%
Longer distance lo-lo services	1.7%

14. Model Output: using scrubbers

- Increased costs of 5-6% moved on longer routes
- Costs via Dover Straits only rise by 4%
- Proportion goods via Northern British ports falls by 5% benefiting shorter crossings to the Thames
- Increased volumes by rail in the UK
- But road kms increase even more

Route	Impact
Channel tunnel through rail	+ve
Dover	+ve
Eurotunnel	+ve
Ramsgate	+ve
Western Channel	-ve
Southern N Sea – Benelux	-ve
Northern N Sea – Benelux	-ve
Scandinavia services	-ve
Longer ro-ro services	-ve
Iberian peninsula	-ve
Ireland	-
Longer distance lo-lo services	-ve

15. Model Output: using MGO

- Increased costs of 9–16% moved on longer routes
 - costs via Dover Straits only riseby 6%
- Proportion goods via Northern
 British ports falls by 24%
 - benefiting shorter crossings to the Thames
- Increased volumes by rail in the UK
 - But road kms increase even more

Route	Impact
Channel tunnel through rail	+ve
Dover	+ve
Eurotunnel	+ve
Ramsgate	+ve
Western Channel	-ve
Southern N Sea – Benelux	+ve
Northern N Sea – Benelux	-ve
Scandinavia services	-ve
Longer ro-ro services	-ve
Iberian peninsula	-ve
Ireland	-
Longer distance lo-lo services	-ve

16. Potential of LNG (negligible sulphur)

- LNG currently offers MUCH LOWER costs than HFO (about 40% saving) and MGO (about 60% saving)
- Switch to LNG therefore <u>favours</u> SSS
- Implication for modal split positive
 - UK study implies 'northern' GB ports GAIN 18% volume
- Challenge:
 - bunkering facilities not available in UK
 - therefore no ships operating to/from UK
 - low charter rates discourage new investments
 - only a few new orders emerging

Route	Impact
Channel tunnel through rail	-ve
Dover	-ve
Eurotunnel	-ve
Ramsgate	-ve
Western Channel	+ve
Southern N Sea – Benelux	-ve
Northern N Sea – Benelux	+ve
Scandinavia services	+ve
Longer ro-ro services	+ve
Iberian peninsula	+ve
Ireland	-
Longer distance lo-lo services	+ve

17. LNG – some further considerations

- LNG offers significant cost savings once the initial investment has been made
- Owners need to be confident that LNG fuel supplies will be readily available therefore regular ferry routes could justify the investment
- Switching to LNG could offer ferry operators huge savings. Recent worked example:
 - 2 ships over 15 years **HFO plus scrubbers** at say £5m = £50 million
 - switch to **LNG** = savings of £11 million
 - annual operating profits (EBITDA) =£35 million
 - @ 10% rate of return over 30 years = capital investment in excess of +£250 million for new ships
- LNG can be used in fast or conventional ferries so fuel cost advantage of conventional ferries in low sulphur zones is annulled
- Existing older ferries may not have the remaining capital worth to make investment in scrubbers a viable option
- A larger ship operating at say 36 knots will double the productivity of the vessel (greater frequency possible)

18. Summary of Impacts

On Shipping:

Shipping effectively required to face the high cost of either:

- fitting scrubbers (say €4 million/ship) or
- using MGO at +€200/tonne (€730/t mgo compared with €530/t hfo)
- Switching to LNG in the longer term
- Ferry operators could re-think strategies using LNG

On Ports:

Relative competitiveness of different routes affected, will lead to:

- some traffic diversion and modal shift to road and rail on some routes
- changing traffic volumes / market shares (both positive and negative)
- need for LNG bunkering infrastructure

19. Finally

- SECA to be introduced in just 2.5 years; the time it takes to design and build a ship.
- Impact assessment by public authorities weak
 - no clear overall view on cost and mode shift implications
 - Therefore some doubts about previous studies' conclusions
 - Mixed messages informing policy makers' decisions
- Our modeling suggests impacts significant
 - freight market highly elastic
- Most efficient resolution in the long term is to switch to LNG
 - but capital costs involved very high
- Infrastructure for LNG could be part-funded by the TEN-T?
- Marco Polo (or equivalent) could help lines adapt to new reality?

